# **16** Jogos no GeoGebra

Nesse texto vamos abordar como construir dois jogos utilizando os recursos gráficos, funções matemáticas e comandos internos do GeoGebra.

### **COMANDO SE**

O comando Se, ou condicional, será muito útil no momento de construirmos os comandos para que os objetos do GeoGebra (polígonos e pontos) passem a funcionar como peças de um jogo.

O condicional *Se*[*<Condição>*, *<Então>*] é um comando que realiza um teste lógico de uma expressão: *<Condição>*. Caso o teste retorne um valor verdadeiro é executada a segunda parte do comando: *<Então>*.

Em uma sintaxe mais completa, o comando Se possui três parâmetros:

Se[ <Condição>, <Então>, <Senão> ]

Caso o valor de *<Condição>* seja verdadeiro é executada a expressão *<Então>*. Se a *<Condição>* for falsa, é executada a expressão *<Senão>*. Por exemplo, é possível obter uma sequência digitando o seguinte comando na *Entrada*.

```
Entrada: Sequência[Se[Resto[i,3]≟0,i,0],i,1,20]
```

A condição do comando Se é Resto[1, 3]  $\neq 0$ . Em outras palavras, se ao dividir o valor de i que varia de 1 a 20 por 3 o resto for 0, retorna o valor de i, caso contrário, retorna 0.

Veja a seguir a lista construída e exibida na Janela de Álgebra ao executar esse comando.

```
Janela de Álgebra
□ Lista
□ lista1 = {0, 0, 3, 0, 0, 6, 0, 0, 9, 0, 0, 12, 0, 0, 15, 0, 0, 18, 0, 0}
```

O comando Se pode ainda ser utilizado para construir funções definidas por partes. Por exemplo, digitando  $f(x) = Se[x>=0, x, x^2]$  na Entrada, o GeoGebra retorna a expressão e o gráfico exibidos abaixo.



#### **JOGO DAS CORES**

(1)

O Jogo das Cores é formado por 15 quadrados e uma célula vazia dispostos em um arranjo 4 x 4. O objetivo do jogo consiste em a partir de uma disposição inicial obter uma disposição final a escolha do jogador.



Disposições finais



Uma peça pode se movimentar na vertical ou na horizontal quando estiver adjacente a célula vazia. Para realizar uma jogada basta clicar sobre uma peça.

(2)

Siga os passos descritos abaixo para construir o Jogo das Cores.



Os pontos P<sub>1</sub> a P<sub>15</sub> servirão como âncoras das peças, o ponto V marcará a célula vazia e Q servirá para reservar coordenadas do ponto âncora da peça clicada, o que será abordado no item 7. Após renomear os pontos, oculte o ponto Q. Na Entrada digite o comando a seguir

Entrada: Polígono[P\_1, (x(P\_1)+1,y(P\_1)),4]

O resultado desse comando é a construção de um quadrado ancorado somente no ponto P<sub>1</sub>, pois o segundo ponto do comando *Polígono* é obtido em função de P<sub>1</sub>.



Ao mover o ponto  $P_1$ , o polígono é redefinido a partir desse ponto. O polígono está ancorado em  $P_1$ .





 $(\mathbf{4})$ 

Ao final desse processo você constrói15 quadrados ancorados nos pontos de P1 a P15.



(5)

Construa um controle deslizante com valor mínimo: 0; valor máximo: 1 e incremento: 0.1. Esse controle será utilizado para definir a transparência de cada quadrado. Em seguida, modifique a cor dos polígonos conforme exibido na imagem abaixo.

Selecione os polígonos da primeira coluna. Em seguida, acesse Propriedades e, na aba Avançado, preencha Transparência com o nome do controle deslizante. Modificando o valor do controle deslizante para 1 o resultado será o seguinte.





Com o valor do controle deslizante zero os quadrados ficam completamente transparentes.



(8)

O movimento de uma peça é realizado permutando as coordenadas de seu ponto âncora (P<sub>1</sub>, P<sub>2</sub>, ..., P<sub>15</sub>) com as coordenadas do ponto V. Para realizar essa troca de coordenadas é necessário que o ponto Q reserve as coordenadas do ponto Âncora (P<sub>n</sub>) da peça clicada. Assim, ao clicar em uma peça, Q recebe as coordenadas de P<sub>n</sub>,



Em seguida, Pn recebe as coordenadas de V.



E, por último, V recebe as coordenadas de Q.



Esse artifício é utilizado, porque não é possível realizar a permutação direta das coordenas de Pn e V.

ser escritas três linhas de comandos.

# D V



Ao clicar em uma peça, ela é movimentada para a célula vazia se estiver adjacente a célula vazia. As únicas peças que podem ser movimentadas na disposição abaixo são: pol7, pol10, pol11 e pol12.



O critério acima deve ser traduzido em comandos para o GeoGebra. Logo, uma peça pode ser movimentada para a célula vazia se seu ponto âncora (P<sub>n</sub>) possuir distância igual a 1 do ponto V:

Distância[P\_n,V] ≟ 1

Na disposição acima, os pontos  $P_7$ ,  $P_{10}$ ,  $P_{11}$  e  $P_{12}$  (âncoras de pol7, pol10, pol11 e pol12) atendem a esse critério.

📜 💽 🖻 🔯 🎭 Número Básico Cor Estilo Avançado Programação @ 0 Ao Clicar Ao Atualizar JavaScript Global Polígono ø pol1 1 DefinirValor[Q,P\_{10}] ✓ pol10 2 Se[Distância[Q,V]≟ 1, DefinirValor[P\_{10},V]] ol11 3 Se[Distância[Q,V] ≟ 1, DefinirValor[V,Q]] ol12 pol13 pol14 🧉 pol2 🧼 pol3 ol4 ·⊘ pol6 ol7 🧼 pol8 Ion (a) Código GeoGebra 🗸 OK Cancelar Ponto

Para que cada polígono se comporte como uma peça e o arranjo 3 x 3 seja um jogo, em cada polígono devem

O comando da primeira linha reserva as coordenadas de  $P_{10}$  em Q. O comando da segunda linha verifica se a distância de  $P_{10}$  a V é igual a 1 (Q guarda as coordenadas de  $P_{10}$ ) e. se for verdadeiro,  $P_{10}$  recebe as coordenadas de V para que a peça 10 ocupe a célula vazia. Por último, a célula vazia, cujo ponto V determina seu endereço, recebe as antigas coordenadas de  $P_{10}$  armazenadas em Q e, com isso, é realizada a troca de coordenadas de  $P_{10}$  e V.

Essas três linhas de comandos devem ser escritas na aba *Programação*, em *Ao Clicar*, das peças 1, 2, 3,...,15. Deve-se ter atenção especial em modificar P\_{10} para P\_1, P\_2, P\_3, ..., P\_9, P\_{11}, ..., P\_{15}.



Oculte os pontos e os rótulos dos polígonos. Em seguida, selecione todos os polígonos, acesse propriedades e, na aba *Básico*, altere *Fixar Objeto* para ativo. Na aba *Avançado*, desabilite a descrição. Por último oculte o controle deslizante e jogo estará pronto para disputar uma partida.



## **JOGO DO 15**

Aproveitando a estrutura do Jogo das Cores é possível construir o Jogo do 15.

O "15-puzzle" ou "Jogo do 15" é um antigo jogo de translações composto por um arranjo de 15 peças. Nesse jogo o objetivo consiste em organizar as peças em ordem crescente conforme indicado na figura abaixo.

| 10 | 15 | 8  | 4  |
|----|----|----|----|
| 14 | 9  |    | 3  |
| 6  | 1  | 5  | 13 |
| 12 | 2  | 11 | 7  |

Uma peça pode ser deslocada na vertical ou na horizontal de modo semelhante ao que acontece com o Jogo das Cores. Para construir o Jogo do 15 a partir da estrutura do Jogo das Cores é necessário construir quadrados numerados de 1 a 15 com medidas iguais aos quadrados do Jogo das Cores. Para isso, você pode utilizar um software gráfico ou construir no GeoGebra e exportar como imagem no formato jpg ou png.

| 1  | 2  | 3  | 4  |
|----|----|----|----|
| 5  | 6  | 7  | 8  |
| 9  | 10 | 11 | 12 |
| 13 | 14 | 15 |    |



Em seguida, exiba os pontos âncoras das peças do Jogo das Cores e modifique a transparência no controle deslizante para zero. Utilizando a ferramenta *Inserir Figura*, clique nos pontos P<sub>1</sub> a P<sub>15</sub> e insira as figuras.



Após inserir todas as figuras, oculte os pontos e o controle deslizante o. Por último, modifique a cor de todos os segmentos para branca, misture as peças e jogo estará finalizado.

| 4  | 10 | 13 | 5  |
|----|----|----|----|
| 11 | 14 | 1  | 12 |
| 2  | 9  | 8  | 7  |
| 6  | 15 | 3  |    |