

No texto que segue abordamos algumas possibilidades de construção de formas tridimensionais no GeoGebra. Para isso, discutimos inicialmente rotação com vetores em R³ para, em seguida, obtermos suas projeções no plano. Depois abordamos como construir um arquivo base no GeoGebra sobre o qual faremos construções em três dimensões e, como exemplo, a construção de formas obtidas por revoluções.

ROTAÇÃO EM R³ E PROJEÇÃO NO PLANO

Considere um sistema ortogonal com os eixos x, y e z. Esses eixos tomados dois a dois determinam planos.

A partir de um objeto plotado nesse sistema ortogonal é possível obter outro girando o primeiro em torno do eixo x, y ou z.

Para obter a imagem rotacionada de um objeto um ângulo α em torno do eixo x, por exemplo, é preciso rotacionar cada um de seus vértices V_n = (x_n, y_n, z_n). Para tanto deve ser realizado o seguinte cálculo.

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos(\alpha) & -\sin(\alpha) \\ 0 & \sin(\alpha) & \cos(\alpha) \end{bmatrix} \begin{bmatrix} x_n \\ y_n \\ z_n \end{bmatrix}$$

A matriz R_x é a matriz de rotação em torno do eixo x. Neste texto fica designada como R_y a matriz de rotação em um ângulo β em torno do eixo y e de R_z a matriz de rotação um ângulo χ em torno do eixo z, e são elas:

	cos(β)	0	sen(β)		cos(χ)	–sen(χ)	0
$R_y =$	0	1	0	$e R_z =$	sen(χ)	cos(χ)	0
	sen(β)	0	cos(β)		0	0	1

$$\begin{split} R_{x} \times R_{y} \times R_{z} \times V_{n} \\ \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos(\alpha) & -\sin(\alpha) \\ 0 & \sin(\alpha) & \cos(\alpha) \end{bmatrix} \cdot \begin{bmatrix} \cos(\beta) & 0 & \sin(\beta) \\ 0 & 1 & 0 \\ -\sin(\beta) & 0 & \cos(\beta) \end{bmatrix} \cdot \begin{bmatrix} \cos(\chi) & -\sin(\chi) & 0 \\ \sin(\chi) & \cos(\chi) & 0 \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} x_{n} \\ y_{n} \\ z_{n} \end{bmatrix} \\ \\ \begin{bmatrix} \cos(\beta) \cdot \cos(\chi) & -\cos(\beta) \cdot \sin(\chi) & -\cos(\beta) \cdot \sin(\chi) \\ \sin(\alpha) \cdot \sin(\beta) \cdot \cos(\chi) + \cos(\alpha) \cdot \sin(\chi) & -\sin(\beta) \cdot \sin(\chi) + \cos(\alpha) \cdot \cos(\chi) & -\sin(\beta) \cdot \sin(\chi) \\ -\cos(\alpha) \cdot \sin(\beta) \cdot \cos(\chi) + \sin(\alpha) \cdot \sin(\chi) & \cos(\alpha) \cdot \sin(\beta) \cdot \sin(\chi) + \sin(\alpha) \cdot \cos(\chi) & \cos(\alpha) \cdot \cos(\beta) \\ -\cos(\alpha) \cdot \sin(\beta) \cdot \cos(\chi) + \sin(\alpha) \cdot \sin(\chi) & \cos(\alpha) \cdot \sin(\beta) \cdot \sin(\chi) + \sin(\alpha) \cdot \cos(\chi) & \cos(\alpha) \cdot \cos(\beta) \\ \end{bmatrix} \cdot \begin{bmatrix} x_{n} \\ y_{n} \\ z_{n} \end{bmatrix} \\ \\ \\ A \text{ partir da matriz } R_{xyz} \text{ obtemos três submatrizes:} \end{split}$$

Essas matrizes correspondem a projeções dos vetores coluna no plano yz e serão usadas nas construções das próximas seções.

$$\mathbf{x}' = \begin{bmatrix} \operatorname{sen}(\alpha).\operatorname{sen}(\beta).\cos(\chi) + \cos(\alpha).\operatorname{sen}(\chi) \\ -\cos(\alpha).\operatorname{sen}(\beta).\cos(\chi) + \operatorname{sen}(\alpha).\operatorname{sen}(\chi) \end{bmatrix}, \quad \mathbf{y}' = \begin{bmatrix} -\operatorname{sen}(\alpha).\operatorname{sen}(\beta).\operatorname{sen}(\chi) + \cos(\alpha).\cos(\chi) \\ \cos(\alpha).\operatorname{sen}(\beta).\operatorname{sen}(\chi) + \operatorname{sen}(\alpha).\cos(\chi) \end{bmatrix}$$
$$\mathbf{z}' = \begin{bmatrix} -\operatorname{sen}(\alpha).\cos(\beta) \\ \cos(\alpha).\cos(\beta) \end{bmatrix}$$

CONSTRUÇÃO DO ARQUIVO BASE

O arquivo que construímos a seguir é utilizado para realizar as demais construções que propomos nesse texto. Assim, após concluirmos essa construção salvaremos com o nome base para ser utilizado em cada construção que iniciarmos.

(\mathbf{L})	(\mathbf{L})

Com o GeoGebra aberto exibindo os eixos e a malhas construa três círculos de raio 1 com centro nos pontos: $O_1 = (-3, 2), O_2 = (-3, 5) e O_3 = (-3, 8).$

Construa os pontos $P_1 = (-2, 2)$, $P_2 = (-2, 5) e$ $P_3 = (-2, 8) e três pontos sobre as circunferências como mostra a figura abaixo.$

Construa os segmentos para determinar os lados dos ângulos α = P₁O₁A, β = P₂O₂A e χ = P₃O₃A e, utilizando a ferramenta *Ângulo*, marque esses ângulos.

Defina as circunferências, os segmentos e os pontos O_1 , O_2 , O_3 , P_1 , P_2 , P_3 como objetos auxiliares. Em seguida, oculte os eixos e os objetos construídos de maneira que fiquem exibidos somente os objetos que aparecem na imagem abaixo.

Clique no menu *Exibir* e acesse a opção de *Janela de Visualização 2* e, na *Entrada* digite os comandos abaixo para construir um ponto e três vetores:

- O = (0, 0)
- $x' = (\cos(\alpha) \operatorname{sen}(\gamma), -\cos(\alpha) \operatorname{sen}(\beta) \cos(\gamma) + \operatorname{sen}(\alpha) \operatorname{sen}(\gamma))$
- $y' = (-sen(\alpha) sen(\beta) sen(\gamma) + cos(\alpha) cos(\gamma), cos(\alpha) sen(\beta) sen(\gamma) + sen(\alpha) cos(\gamma))$
- z' = (-sen(α) cos(β), cos(α) cos(β))

Com isso ficam construídos os vetores que definem o espaço R³ rotacionado segundo os ângulos α , β e χ e projetado no plano yz. Na imagem acima é apresentada uma projeção de R³ em xy para α = 0°, β = 45° e χ = 315°.

Salve o arquivo nomeando-o de base. Utilizamos cópias desse arquivo nas construções que seguem.

FIGURAS POR REVOLUÇÃO

Abordamos a seguir como construir um objeto no arquivo produzido na seção anterior para obter formas tridimensionais por meio de revoluções.

Abra o arquivo *base* e construa dois controles deslizantes: *comprimento* e *largura*. Sugerimos que o *comprimento* tenha valor mínimo 0, valor máximo 10 e incremento 0.1; e o *largura* tenha valor mínimo 0, valor máximo 5 e incremento 0.1. Em seguida, na Entrada, digite o seguinte comando:

Com isso, obtemos um retângulo cuja largura e comprimento são determinadas pelos valores dos controles deslizantes.

(3)

Com a ferramenta *Ponto em Objeto* construa quatro pontos no polígono. Em seguida, construa um polígono com vértices nesses pontos.

Entrada: L_1=Sequência[Girar[(x(D),0), (i 6)°], i, 0, n]

Como é possível ver na imagem abaixo, esse comando retorna um conjunto de 30 pontos girados 6°, 12°, 18°, ..., 180° em torno de (0, 0), pois n = 30 e o ponto girado corresponde a projeção ortogonal de D sobre o eixo x.

Na Entrada digite os comandos abaixo

- L_2=Sequência[Girar[(x(E),0), (i 6)°], i, 0, n]
- L_3=Sequência[Girar[(x(F),0), (i 6)°], i, 0, n]

• L_4=Sequência[Girar[(x(G),0), (i 6)°], i, 0, n] para obter as sequências de giros em torno de (0, 0) das projeções ortogonais de E, F e G no eixo x.

Fazendo n = 60 você obtém a figura ao lado.

Digitando o comando L_5 = Sequência[x(Elemento[L_1, i]) x' + y(Elemento[L_1, i]) y' + y(D) z', i, 1, n], você obtém a representação em 3D dos pontos da sequência L₁, ou seja, os 60 pontos dessa sequência correspondentes a giros da projeção de D em torno de (0, 0) são plotados no plano x'y' e transladados pelo vetor y(D). z'.

Na *Janela de Visualização* aparecem os pontos em uma representação plana e, na *Janela de Visualização* 2, as imagens desses pontos em uma representação tridimensional.

6

A partir dos comandos abaixo você obtém a representação tridimensional das sequências de pontos L2, L3 e L4.

- L_6 = Sequência[x(Elemento[L_2, i]) x' + y(Elemento[L_2, i]) y' + y(E) z', i, 1, n]
- L_7 = Sequência[x(Elemento[L_3, i]) x' + y(Elemento[L_3, i]) y' + y(F) z', i, 1, n]
- L_8 = Sequência[x(Elemento[L_4, i]) x' + y(Elemento[L_4, i]) y'+ y(G) z', i, 1, n]

Digitando o seguinte comando

(7)

 L_9 = Sequência[Polígono[Elemento[L_5, i], Elemento[L_6, i], Elemento[L_7, i], Elemento[L_8, i]], i, 0, n] na *Entrada* você obtém os polígonos formados por elementos das listas L₅, L₆, L₇ e L₈. Veja na imagem abaixo o resultado para n = 1, n = 25 e n = 60.

O polígono verde exibido na Janela de Visualização 2 é obtido por meio do seguinte comando: Polígono[Elemento[L_5, n], Elemento[L_6, n], Elemento[L_7, n], Elemento[L_8, n]]

Reposicionando os pontos D, E, F e G é possível obter cilindros, cones e troncos de cone.

www.ogeogebra.com.br

